3.9.60 \(\int \frac {\sqrt {e x} (a+b x^2)^2}{(c+d x^2)^{5/2}} \, dx\) [860]

Optimal. Leaf size=403 \[ \frac {(b c-a d)^2 (e x)^{3/2}}{3 c d^2 e \left (c+d x^2\right )^{3/2}}-\frac {(b c-a d) (3 b c+a d) (e x)^{3/2}}{2 c^2 d^2 e \sqrt {c+d x^2}}+\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \sqrt {e x} \sqrt {c+d x^2}}{2 c^2 d^{5/2} \left (\sqrt {c}+\sqrt {d} x\right )}-\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \sqrt {e} \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{2 c^{7/4} d^{11/4} \sqrt {c+d x^2}}+\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \sqrt {e} \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{4 c^{7/4} d^{11/4} \sqrt {c+d x^2}} \]

[Out]

1/3*(-a*d+b*c)^2*(e*x)^(3/2)/c/d^2/e/(d*x^2+c)^(3/2)-1/2*(-a*d+b*c)*(a*d+3*b*c)*(e*x)^(3/2)/c^2/d^2/e/(d*x^2+c
)^(1/2)+1/2*(-a^2*d^2-2*a*b*c*d+7*b^2*c^2)*(e*x)^(1/2)*(d*x^2+c)^(1/2)/c^2/d^(5/2)/(c^(1/2)+x*d^(1/2))-1/2*(-a
^2*d^2-2*a*b*c*d+7*b^2*c^2)*(cos(2*arctan(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2)))^2)^(1/2)/cos(2*arctan(d^(1/4)*
(e*x)^(1/2)/c^(1/4)/e^(1/2)))*EllipticE(sin(2*arctan(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2))),1/2*2^(1/2))*(c^(1/
2)+x*d^(1/2))*e^(1/2)*((d*x^2+c)/(c^(1/2)+x*d^(1/2))^2)^(1/2)/c^(7/4)/d^(11/4)/(d*x^2+c)^(1/2)+1/4*(-a^2*d^2-2
*a*b*c*d+7*b^2*c^2)*(cos(2*arctan(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2)))^2)^(1/2)/cos(2*arctan(d^(1/4)*(e*x)^(1
/2)/c^(1/4)/e^(1/2)))*EllipticF(sin(2*arctan(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2))),1/2*2^(1/2))*(c^(1/2)+x*d^(
1/2))*e^(1/2)*((d*x^2+c)/(c^(1/2)+x*d^(1/2))^2)^(1/2)/c^(7/4)/d^(11/4)/(d*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.23, antiderivative size = 403, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {474, 468, 335, 311, 226, 1210} \begin {gather*} \frac {\sqrt {e} \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} \left (-a^2 d^2-2 a b c d+7 b^2 c^2\right ) F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{4 c^{7/4} d^{11/4} \sqrt {c+d x^2}}-\frac {\sqrt {e} \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} \left (-a^2 d^2-2 a b c d+7 b^2 c^2\right ) E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{2 c^{7/4} d^{11/4} \sqrt {c+d x^2}}+\frac {\sqrt {e x} \sqrt {c+d x^2} \left (-a^2 d^2-2 a b c d+7 b^2 c^2\right )}{2 c^2 d^{5/2} \left (\sqrt {c}+\sqrt {d} x\right )}-\frac {(e x)^{3/2} (a d+3 b c) (b c-a d)}{2 c^2 d^2 e \sqrt {c+d x^2}}+\frac {(e x)^{3/2} (b c-a d)^2}{3 c d^2 e \left (c+d x^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[e*x]*(a + b*x^2)^2)/(c + d*x^2)^(5/2),x]

[Out]

((b*c - a*d)^2*(e*x)^(3/2))/(3*c*d^2*e*(c + d*x^2)^(3/2)) - ((b*c - a*d)*(3*b*c + a*d)*(e*x)^(3/2))/(2*c^2*d^2
*e*Sqrt[c + d*x^2]) + ((7*b^2*c^2 - 2*a*b*c*d - a^2*d^2)*Sqrt[e*x]*Sqrt[c + d*x^2])/(2*c^2*d^(5/2)*(Sqrt[c] +
Sqrt[d]*x)) - ((7*b^2*c^2 - 2*a*b*c*d - a^2*d^2)*Sqrt[e]*(Sqrt[c] + Sqrt[d]*x)*Sqrt[(c + d*x^2)/(Sqrt[c] + Sqr
t[d]*x)^2]*EllipticE[2*ArcTan[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], 1/2])/(2*c^(7/4)*d^(11/4)*Sqrt[c + d*x^2
]) + ((7*b^2*c^2 - 2*a*b*c*d - a^2*d^2)*Sqrt[e]*(Sqrt[c] + Sqrt[d]*x)*Sqrt[(c + d*x^2)/(Sqrt[c] + Sqrt[d]*x)^2
]*EllipticF[2*ArcTan[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], 1/2])/(4*c^(7/4)*d^(11/4)*Sqrt[c + d*x^2])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 311

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 468

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(-(b*c - a*d
))*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*b*e*n*(p + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a
*b*n*(p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0]
 && LtQ[p, -1] && (( !IntegerQ[p + 1/2] && NeQ[p, -5/4]) ||  !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0]
&& LeQ[-1, m, (-n)*(p + 1)]))

Rule 474

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^2, x_Symbol] :> Simp[(-(b*c - a*
d)^2)*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*b^2*e*n*(p + 1))), x] + Dist[1/(a*b^2*n*(p + 1)), Int[(e*x)^m*(a +
 b*x^n)^(p + 1)*Simp[(b*c - a*d)^2*(m + 1) + b^2*c^2*n*(p + 1) + a*b*d^2*n*(p + 1)*x^n, x], x], x] /; FreeQ[{a
, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin {align*} \int \frac {\sqrt {e x} \left (a+b x^2\right )^2}{\left (c+d x^2\right )^{5/2}} \, dx &=\frac {(b c-a d)^2 (e x)^{3/2}}{3 c d^2 e \left (c+d x^2\right )^{3/2}}-\frac {\int \frac {\sqrt {e x} \left (-\frac {3}{2} \left (2 a^2 d^2-(b c-a d)^2\right )-3 b^2 c d x^2\right )}{\left (c+d x^2\right )^{3/2}} \, dx}{3 c d^2}\\ &=\frac {(b c-a d)^2 (e x)^{3/2}}{3 c d^2 e \left (c+d x^2\right )^{3/2}}-\frac {(b c-a d) (3 b c+a d) (e x)^{3/2}}{2 c^2 d^2 e \sqrt {c+d x^2}}+\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \int \frac {\sqrt {e x}}{\sqrt {c+d x^2}} \, dx}{4 c^2 d^2}\\ &=\frac {(b c-a d)^2 (e x)^{3/2}}{3 c d^2 e \left (c+d x^2\right )^{3/2}}-\frac {(b c-a d) (3 b c+a d) (e x)^{3/2}}{2 c^2 d^2 e \sqrt {c+d x^2}}+\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {c+\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{2 c^2 d^2 e}\\ &=\frac {(b c-a d)^2 (e x)^{3/2}}{3 c d^2 e \left (c+d x^2\right )^{3/2}}-\frac {(b c-a d) (3 b c+a d) (e x)^{3/2}}{2 c^2 d^2 e \sqrt {c+d x^2}}+\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {c+\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{2 c^{3/2} d^{5/2}}-\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \text {Subst}\left (\int \frac {1-\frac {\sqrt {d} x^2}{\sqrt {c} e}}{\sqrt {c+\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{2 c^{3/2} d^{5/2}}\\ &=\frac {(b c-a d)^2 (e x)^{3/2}}{3 c d^2 e \left (c+d x^2\right )^{3/2}}-\frac {(b c-a d) (3 b c+a d) (e x)^{3/2}}{2 c^2 d^2 e \sqrt {c+d x^2}}+\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \sqrt {e x} \sqrt {c+d x^2}}{2 c^2 d^{5/2} \left (\sqrt {c}+\sqrt {d} x\right )}-\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \sqrt {e} \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{2 c^{7/4} d^{11/4} \sqrt {c+d x^2}}+\frac {\left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \sqrt {e} \left (\sqrt {c}+\sqrt {d} x\right ) \sqrt {\frac {c+d x^2}{\left (\sqrt {c}+\sqrt {d} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )|\frac {1}{2}\right )}{4 c^{7/4} d^{11/4} \sqrt {c+d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 20.16, size = 147, normalized size = 0.36 \begin {gather*} \frac {\sqrt {e x} \left (x \left (2 a b c d \left (c+3 d x^2\right )+a^2 d^2 \left (5 c+3 d x^2\right )-b^2 c^2 \left (7 c+9 d x^2\right )\right )+3 \left (7 b^2 c^2-2 a b c d-a^2 d^2\right ) \sqrt {1+\frac {c}{d x^2}} x \left (c+d x^2\right ) \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-\frac {c}{d x^2}\right )\right )}{6 c^2 d^2 \left (c+d x^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[e*x]*(a + b*x^2)^2)/(c + d*x^2)^(5/2),x]

[Out]

(Sqrt[e*x]*(x*(2*a*b*c*d*(c + 3*d*x^2) + a^2*d^2*(5*c + 3*d*x^2) - b^2*c^2*(7*c + 9*d*x^2)) + 3*(7*b^2*c^2 - 2
*a*b*c*d - a^2*d^2)*Sqrt[1 + c/(d*x^2)]*x*(c + d*x^2)*Hypergeometric2F1[-1/4, 1/2, 3/4, -(c/(d*x^2))]))/(6*c^2
*d^2*(c + d*x^2)^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1175\) vs. \(2(417)=834\).
time = 0.13, size = 1176, normalized size = 2.92

method result size
elliptic \(\frac {\sqrt {e x \left (d \,x^{2}+c \right )}\, \sqrt {e x}\, \left (\frac {x \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) \sqrt {d e \,x^{3}+c e x}}{3 c \,d^{4} \left (x^{2}+\frac {c}{d}\right )^{2}}+\frac {e \,x^{2} \left (a^{2} d^{2}+2 a b c d -3 b^{2} c^{2}\right )}{2 d^{2} c^{2} \sqrt {\left (x^{2}+\frac {c}{d}\right ) d e x}}+\frac {\left (\frac {b^{2} e}{d^{2}}-\frac {e \left (a^{2} d^{2}+2 a b c d -3 b^{2} c^{2}\right )}{4 d^{2} c^{2}}\right ) \sqrt {-c d}\, \sqrt {\frac {\left (x +\frac {\sqrt {-c d}}{d}\right ) d}{\sqrt {-c d}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-c d}}{d}\right ) d}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, \left (-\frac {2 \sqrt {-c d}\, \EllipticE \left (\sqrt {\frac {\left (x +\frac {\sqrt {-c d}}{d}\right ) d}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right )}{d}+\frac {\sqrt {-c d}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-c d}}{d}\right ) d}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right )}{d}\right )}{d \sqrt {d e \,x^{3}+c e x}}\right )}{e x \sqrt {d \,x^{2}+c}}\) \(337\)
default \(-\frac {\left (6 \sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {2}\, \sqrt {\frac {-d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, \EllipticE \left (\sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right ) a^{2} c \,d^{3} x^{2}+12 \sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {2}\, \sqrt {\frac {-d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, \EllipticE \left (\sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right ) a b \,c^{2} d^{2} x^{2}-42 \sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {2}\, \sqrt {\frac {-d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, \EllipticE \left (\sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right ) b^{2} c^{3} d \,x^{2}-3 \sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {2}\, \sqrt {\frac {-d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, \EllipticF \left (\sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right ) a^{2} c \,d^{3} x^{2}-6 \sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {2}\, \sqrt {\frac {-d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, \EllipticF \left (\sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right ) a b \,c^{2} d^{2} x^{2}+21 \sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {2}\, \sqrt {\frac {-d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, \EllipticF \left (\sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right ) b^{2} c^{3} d \,x^{2}+6 \sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {2}\, \sqrt {\frac {-d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, \EllipticE \left (\sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right ) a^{2} c^{2} d^{2}+12 \sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {2}\, \sqrt {\frac {-d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, \EllipticE \left (\sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right ) a b \,c^{3} d -42 \sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {2}\, \sqrt {\frac {-d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, \EllipticE \left (\sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right ) b^{2} c^{4}-3 \sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {2}\, \sqrt {\frac {-d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, \EllipticF \left (\sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right ) a^{2} c^{2} d^{2}-6 \sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {2}\, \sqrt {\frac {-d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, \EllipticF \left (\sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right ) a b \,c^{3} d +21 \sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {2}\, \sqrt {\frac {-d x +\sqrt {-c d}}{\sqrt {-c d}}}\, \sqrt {-\frac {x d}{\sqrt {-c d}}}\, \EllipticF \left (\sqrt {\frac {d x +\sqrt {-c d}}{\sqrt {-c d}}}, \frac {\sqrt {2}}{2}\right ) b^{2} c^{4}-6 a^{2} d^{4} x^{4}-12 a b c \,d^{3} x^{4}+18 b^{2} c^{2} d^{2} x^{4}-10 a^{2} c \,d^{3} x^{2}-4 a b \,c^{2} d^{2} x^{2}+14 b^{2} c^{3} d \,x^{2}\right ) \sqrt {e x}}{12 d^{3} c^{2} x \left (d \,x^{2}+c \right )^{\frac {3}{2}}}\) \(1176\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^2*(e*x)^(1/2)/(d*x^2+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/12*(6*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(
1/2)*d)^(1/2)*EllipticE(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*a^2*c*d^3*x^2+12*((d*x+(-c*d)^(1/
2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticE((
(d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*a*b*c^2*d^2*x^2-42*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)
*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticE(((d*x+(-c*d)^(1/2))/(-c*
d)^(1/2))^(1/2),1/2*2^(1/2))*b^2*c^3*d*x^2-3*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/
2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticF(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2
))*a^2*c*d^3*x^2-6*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-
x/(-c*d)^(1/2)*d)^(1/2)*EllipticF(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*a*b*c^2*d^2*x^2+21*((d*
x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)
*EllipticF(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*b^2*c^3*d*x^2+6*((d*x+(-c*d)^(1/2))/(-c*d)^(1/
2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticE(((d*x+(-c*d)^(1
/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*a^2*c^2*d^2+12*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-
c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticE(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/
2*2^(1/2))*a*b*c^3*d-42*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/
2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticE(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*b^2*c^4-3*((d*x+(-
c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*Ell
ipticF(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*a^2*c^2*d^2-6*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1
/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticF(((d*x+(-c*d)^(1/2))/(
-c*d)^(1/2))^(1/2),1/2*2^(1/2))*a*b*c^3*d+21*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/
2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticF(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2
))*b^2*c^4-6*a^2*d^4*x^4-12*a*b*c*d^3*x^4+18*b^2*c^2*d^2*x^4-10*a^2*c*d^3*x^2-4*a*b*c^2*d^2*x^2+14*b^2*c^3*d*x
^2)*(e*x)^(1/2)/d^3/c^2/x/(d*x^2+c)^(3/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2*(e*x)^(1/2)/(d*x^2+c)^(5/2),x, algorithm="maxima")

[Out]

e^(1/2)*integrate((b*x^2 + a)^2*sqrt(x)/(d*x^2 + c)^(5/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.25, size = 232, normalized size = 0.58 \begin {gather*} -\frac {3 \, {\left (7 \, b^{2} c^{4} - 2 \, a b c^{3} d - a^{2} c^{2} d^{2} + {\left (7 \, b^{2} c^{2} d^{2} - 2 \, a b c d^{3} - a^{2} d^{4}\right )} x^{4} + 2 \, {\left (7 \, b^{2} c^{3} d - 2 \, a b c^{2} d^{2} - a^{2} c d^{3}\right )} x^{2}\right )} \sqrt {d} e^{\frac {1}{2}} {\rm weierstrassZeta}\left (-\frac {4 \, c}{d}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, c}{d}, 0, x\right )\right ) + {\left (3 \, {\left (3 \, b^{2} c^{2} d^{2} - 2 \, a b c d^{3} - a^{2} d^{4}\right )} x^{3} + {\left (7 \, b^{2} c^{3} d - 2 \, a b c^{2} d^{2} - 5 \, a^{2} c d^{3}\right )} x\right )} \sqrt {d x^{2} + c} \sqrt {x} e^{\frac {1}{2}}}{6 \, {\left (c^{2} d^{5} x^{4} + 2 \, c^{3} d^{4} x^{2} + c^{4} d^{3}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2*(e*x)^(1/2)/(d*x^2+c)^(5/2),x, algorithm="fricas")

[Out]

-1/6*(3*(7*b^2*c^4 - 2*a*b*c^3*d - a^2*c^2*d^2 + (7*b^2*c^2*d^2 - 2*a*b*c*d^3 - a^2*d^4)*x^4 + 2*(7*b^2*c^3*d
- 2*a*b*c^2*d^2 - a^2*c*d^3)*x^2)*sqrt(d)*e^(1/2)*weierstrassZeta(-4*c/d, 0, weierstrassPInverse(-4*c/d, 0, x)
) + (3*(3*b^2*c^2*d^2 - 2*a*b*c*d^3 - a^2*d^4)*x^3 + (7*b^2*c^3*d - 2*a*b*c^2*d^2 - 5*a^2*c*d^3)*x)*sqrt(d*x^2
 + c)*sqrt(x)*e^(1/2))/(c^2*d^5*x^4 + 2*c^3*d^4*x^2 + c^4*d^3)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {e x} \left (a + b x^{2}\right )^{2}}{\left (c + d x^{2}\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**2*(e*x)**(1/2)/(d*x**2+c)**(5/2),x)

[Out]

Integral(sqrt(e*x)*(a + b*x**2)**2/(c + d*x**2)**(5/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2*(e*x)^(1/2)/(d*x^2+c)^(5/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^2*sqrt(x)*e^(1/2)/(d*x^2 + c)^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {e\,x}\,{\left (b\,x^2+a\right )}^2}{{\left (d\,x^2+c\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((e*x)^(1/2)*(a + b*x^2)^2)/(c + d*x^2)^(5/2),x)

[Out]

int(((e*x)^(1/2)*(a + b*x^2)^2)/(c + d*x^2)^(5/2), x)

________________________________________________________________________________________